fivetran#
Fivetran data processing functions.
These functions help transform Fivetran’s standardized schemas into formats suitable for PyMC-Marketing models.
Example usage for MMM:
from pymc_marketing.data.fivetran import (
process_fivetran_ad_reporting,
process_fivetran_shopify_unique_orders,
)
from pymc_marketing.mmm import MMM
# Process ad spend data for media channels
x = process_fivetran_ad_reporting(
campaign_df, value_columns="spend", rename_date_to="date"
)
# Result: date | facebook_ads_spend | google_ads_spend | ...
# Process conversion data (orders) as target variable
y = process_fivetran_shopify_unique_orders(orders_df)
# Result: date | orders
# Use in MMM model
mmm = MMM(...)
mmm.fit(X=x, y=y["orders"])
There are also pandas accessors for these functions which allows calling them from a
pandas DataFrame. These accessors are registered under the fivetran
namespace and
can be accessed after importing pymc_marketing.
import pandas as pd
from pymc_marketing.mmm import MMM
campaign_df: pd.DataFrame = ...
orders_df: pd.DataFrame = ...
X: pd.DataFrame = campaign_df.fivetran.process_ad_reporting(value_columns="spend")
y: pd.DataFrame = orders_df.fivetran.process_shopify_unique_orders()
# Use in MMM model
mmm = MMM(...)
mmm.fit(X=x, y=y["orders"])
Functions
|
Process Fivetran Ad Reporting tables into wide, model-ready features. |
Compute daily unique order counts from a (pre-filtered) Shopify dataset. |
Classes
|
Accessor for Fivetran data processing functions. |