RegressionModelBuilder.approximate_fit#
- RegressionModelBuilder.approximate_fit(X, y=None, progressbar=None, random_seed=None, *, fit_kwargs=None, sample_kwargs=None)[source]#
Fit a model using Variational Inference and return InferenceData.
This performs variational inference via
pymc.fit
, then draws posterior samples from the fitted approximation viaApproximation.sample
, returning anarviz.InferenceData
compatible with the rest of the API (same structure as.fit
).- Parameters:
- Xarray_like |
array
,shape
(n_obs
,n_features
) The training input samples. If scikit-learn is available, array-like, otherwise array.
- yarray_like |
array
,shape
(n_obs,) The target values (real numbers). If scikit-learn is available, array-like, otherwise array.
- progressbarbool, optional
Specifies whether the fitting/sample progress bar should be displayed. Defaults to True.
- random_seed
Optional
[RandomState
] Provides stochastic procedures with initial random seed for reproducibility.
- fit_kwargs
dict
, optional Extra keyword arguments forwarded to
pymc.fit
(e.g., {“n”: 10_000, “method”: “advi”}).- sample_kwargs
dict
, optional Extra keyword arguments forwarded to
Approximation.sample
(e.g., {“draws”: 1_000}).
- Xarray_like |
- Returns:
az.InferenceData
Inference data of the variationally fitted model.